LaTex reference
Open Source editor, VSCode, supports mathematical typesetting with LaTeX in Markdown documents. Equations are rendered in the Live Preview Pane, enabled with Ctrl + K V. No other libraries, extensions or apps need to be installed. Rendering in Live Preview is performed by KaTeX , a fast, easy-to-use JavaScript library for TeXTEβX math rendering on the web.
Inline LaTeX mathematical notation is wrapped in single-dollar signs. For example, for the square of $ x $, just type $ x^2 $
, which is then formatted as $x^2$.
The spaces after/before dollar sign are not needed, but offer some clarity in reading.
The above example showed how a formula may be used inline.
for example:
- $ax^2 + bx + c = 0$
- You could also write : $ax ^2 + bx + c = 0$
- This one: $ax^2 + bx + c = 0$ - asterix is not needed !
- use slash pi to indicate greek letter pi i.e.
\pi
- fractions are written with a slash frac i.e.
\frac
- subscripts are written with underscore $x_i$ $x_i^n$
- $\pi$ is almost equal to $\frac{22}{7}$
- Integrals are written with slash int , i.e.
\int
- $F(x) = \int f(x)dx\$
- Summations are written with a
\displaystyle\sum
- $\displaystyle\sum_{i=1}^n n= 1 + 2 + 3 + ... n =\frac{n(n+1)}{2}$
To put formla/formuale in a separate paragraph, use a separate code block, as follows:
$ \displaystyle\sum_{k=3}^5 k^2=3^2 + 4^2 + 5^2 =50 $
A: To write multiple formulae in one block;
they must be terminated by \\
, for example:
$ f(x) = x^2\ f(z) = z^2\ f'(x) = 2x\ F(x) = \int f(x)dx\ F(x) = \frac{1}{3}x^3 $
B: When formulae are grouped togather using a block; they are are aligned and also automatically numbered. $ \begin{align} f(x) = x^2\ f(z) = z^2\ f'(x) = 2x\ F(x) = \int f(x)dx\ F(x) = \frac{1}{3}x^3 \end{align} $
C: Using &=
instead of =
aligns formuale nicely along the $=$ symbol.
$ \begin{align} f(x) &= x^2\ f(z) &= z^2\ f'(x) &= 2x\ F(x) &= \int f(x)dx\ F(x) &= \frac{1}{3}x^3 \end{align} $
Fractions
Using normal slash , i.e. /
: $sin (\pi/4) = 1/ \sqrt 2$
Using \frac
notation: $sin (\frac{\pi}{4}) = \frac {1}{\sqrt 2}$
Another example: $\frac{1}{\sqrt{sin(x)}} $ Another example: $\frac{1}{sin(\sqrt{x})} $
sin cos tan inverse and square
$sin(x)$ $cos(\theta)$
$sin^2 \theta + cos^2 \theta = 1 $
$sin^2 {\theta} + cos^2 {\theta} = 1 $
$sin^2 (\theta) + cos^2 (\theta) = 1 $
Wrong ways of writing sin inverse x:
$sin^-1(x) = 0 $
$sin^(-1)(x) = 0 $
The right way, using curlies: $sin^{-1}(x) = 0 $
Fractions:
Notice nice alignment of numerator and denominator
$ sin(x) = \frac {1}{\alpha} + \frac {1}{\sqrt{1+ \frac{1}{\beta^2}}} $
Another example: $k = \frac{1}{sin^2(\sqrt{x})} $
Differenciation
$ y = cos(x)\ \ \frac {dy}{dx} = sin(x)\ y = x^n\ \frac {dy}{dx} = nx^{n-1} $
Integral
$ F(x) = \int^a_b \frac{1}{3}x^3 $
Magu tries here
this be a list
- hey
- How
- are
- you
this be a tabil
Name | Whether Magu | Animal | Magic Nr |
---|---|---|---|
Roopa | Magu | Teddy bear | 12 |
Varu | Magu | Tiger | 9840348595 |
Daddy | Bigs | rhinoceros | 7 |
Jojo | Magu | puppy | 12 |
Magu has magic formula !
$ ax ^ 2 + bx + c = 0 $
$ x = \frac {-b \pm \sqrt {b^2 - 4ac}} {2a} $
$ a= 1/3 $
$ a= \frac 1 3 $
$b= sin(x)$
$c= \frac 1 {sin(x)} $
$ \begin{align} sin^2\theta + cos^2\theta &= 1\ (a+b)^2 &= a^2 + 2ab+ b^2 \end{align} $
$ F(x)=\int^2_3 \frac {1} {\sqrt{1+x^2}} $
$ \begin{align} f(x) &= 2x^2 +3x +14 \ f'(x) &= 4x +3 \ \frac {\partial^2 {x}}{\partial {y^2}}\ \end{align} $
$ \frac {\partial^2 {x}}{\partial {y^2}} $
Greek lettersu
$ \alpha \Alpha \beta \Beta \gamma \delta \epsilon \phi \lambda \psi \mu \nu \omicron \pi \zeta \eta \iota \kappa \rho \sigma \tau \upsilon \chi \omega $
Jojo be the boss
- lists
- list item
- indented
- etc
name | pet | MF | number |
---|---|---|---|
Jojo | turtle | M | 234 |
Varu | cat | F | 992372-01283 |
roop | dog | F | 3 |
dada | max | M | 233 |
formulas
$ ax^2 + bx + c = 0 $
$ a = 1/4 $
$ a = \frac {1}{4} $
$ b = sin \theta $
$ \Delta = rt -s^2 $
$ x = -b \pm \frac {\sqrt{b^2-4ac}}{2a} $
$ F(x) = \int \frac{dx}{\sqrt{1+x^2}} = tan^{-1}(x) + c $
$ F(x) = \int x^n dx = \frac {x^{n+1}}{n+1} + c $
A block
$
\begin{align}
F(x) = \int \frac{dx}{\sqrt{1+x^2}} &= tan^{-1}(x) + c \
F(x) = karthik * \int x^n dx &= \frac {x^{n+1}}{n+1} + c
\end{align}
$
References
https://latex-tutorial.com/tutorials/first-document/ (opens in a new tab)
https://latex-tutorial.com/symbols/greek-alphabet/ (opens in a new tab)
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes (opens in a new tab)
https://www.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols (opens in a new tab)
https://latex-tutorial.com/partial-derivative-latex/ (opens in a new tab)
https://www.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols (opens in a new tab)
https://latex-tutorial.com/tutorials/first-document/ (opens in a new tab)
https://docs.mathjax.org/en/latest/input/tex/index.html#tex-and-latex-support (opens in a new tab)